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Abstract. Some theoretical approaches and computer aided simulations 

related with 2D sine gear profile on cylindrical gears are presented in this paper. 

Compared to a usual involute profile, the sine gear profile is a more convenient 

shape which mainly diminishes the sliding process, increases the load capacity 

and assures a smoother motion in gearing. Similarly with the generating method 

of involute profile of the flank faces on toothed wheel, the sine gear profile is 

obtained by pure rolling of a generating rack (having sine tooth profile) around a 

fixed pitch circle. The inner envelope bordered by the positions of generating 

rack during rolling describes the 2D sine gear profile. The main achievements of 

this paper are related with rolling simulation and 2D sine gear profiles detection 

in different circumstances. Some consequences related especially with the 

influence of generating rack shape (tooth addendum value) are also highlighted. 
 

Keywords: sine gear profile; generating rack; rolling; simulation. 

 

 

1. Introduction 

 

The sine gear profile on cylindrical gears (Tkach et al., 2019; Hrytsay 

and Stupnytskyy, 2020) is a particular case of non-involute profiles. Here the 
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generating rack (placed as cutting edge on a rack type cutter during 

manufacturing process with rolling) has a sine shape (with dedendum equal 

with addendum) which is relatively more complex than the generating rack used 

in gears with involute tooth profiles.  

According with the literature, the sine gear profile on cylindrical gears, 

also known as cosine gear profile (Luo et al., 2008; Hu and Wang, 2012; Laczik 

et al., 2014; Wadagaonkar and Shinde, 2015; Lee, 2017; Lee, 2019; Si et al., 

2020), has some significant advantages compared to the involute profile 

(regularly used). Firstly, the sliding process between the flanks faces of the 

toothed wheels involved in a gear is diminished (Tkach et al., 2019), with two 

positive consequences: the power lost in heating phenomenon and the 

temperature decreases while the transmitted power in gear increases. Secondly, 

the tooth thickness on sine gear in the root area is bigger than the tooth 

thickness on involute profile; this means a lower tooth bending stress for the 

same loading or a higher loading capacity for the same bending stress as well 

(Wadagaonkar and Shinde, 2015). Thirdly, according with (Lee, 2017) the sine 

gear is appropriate to avoid the undercutting phenomenon which appears on 

involute gear profile (Alipiev et al., 2013) for small number of teeth. Fourthly 

and last, the smoothness of the work (Wildhaber, 1966), the low level of noise, 

the absence of edge contact problem (Lee, 2019) is also an important feature of 

the sine gears. 

The sine gear profile is applicable for many other types of external 

gears: face gears (Lee, 2019), bevel gears, non-circular bevel gears (Zheng et 

al., 2016) and particularly for internal cylindrical gears (planetary gears) with 

small difference of number of teeth (Si et al., 2020) mainly because in certain 

conditions it is able to avoid the tooth tip interference. 

This paper focuses on sine gear profile geometrical definition based 

on pure rolling simulation using a mathematical model and a method of 

detection for 2D sine gear profile (2D SGP) adapted from a previous work 

(Horodincă, 2020). 

Similarly with involute tooth profile, the sine gear profile is the result of 

rolling between a movable sine shape generating rack (SSGR) which rolls on a 

fixed pitch circle (the datum line being permanently tangent to the pitch circle). 

The inner envelope bordered by all generating rack positions during rolling 

describes the 2D SGP. Some particularities of the 2D SGP are revealed. 

 

2. A Mathematical Model of Sine Shape Generating Rack 

 Position and Trajectory Used in Rolling Simulation 

 

The significant characteristics of a SSGR used in rolling are revealed in 

Fig. 1. Mainly similar definitions and nomenclature as for involute gears 

(https://en.wikipedia.org/wiki/List_of_gear_nomenclature) can be used here. If 

consider the generating rack placed in a Cartesian coordinate system (CCS) 
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x1O1y1 with the datum (pitch line) located on x1-axis then any point Pi1 placed 

on the generating rack should have mandatory the coordinates x1(Pi1) and y1(Pi1) 

in CCS x1O1y1 interrelated by a sine function as follows: 
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Here m is the gear module involved in definition of the circular pitch 

p=πm (Fig. 1), tt is the circular tooth thickness, st is the circular space thickness 

(here tt=st=p/2), ha=ch·m is the addendum (equal with dedendum hd), with 2·ha 

the tooth depth, ch being a proportionality factor (e.g. ch=1). In Eq. (1) ha is also 

the amplitude of the sine function. In the argument of a sine function involved 

in a harmonic motion y(t) related by time t as (y(t)=A·sin(ωt)) the angular 

velocity ω is related by period T with the relationship ω=2π/T. In Eq. (1) the 

equivalent of t is x1(Pi1) and the equivalent of ω=2π/T is 2/m. From 2π/T=2/m 

results T=πm, this being exactly -as expected- the circular pitch p=πm of SSGR 

and sine gear profile as well.  
 

 

 
 

Fig. 1 – Sine gear profile and SSGR positions during rolling. 

 

The rolling implies that the datum line should be tangent to pitch circle 

(having the radius Rp=mZ/2, with Z the number of teeth of the toothed wheel) in 

the pitch point Pp and consequently the tip line is tangent to root circle while the 

root line is tangent to tip circle. It is mandatory that the generating rack moves 

along its datum line with the velocity v strictly correlated with the rotation of 

pitch circle (around its centre) having the angular speed ω in order to avoid the 

sliding in the pitch point Pp, with the relationship v=ωRp (as a gearing law). The 

2D SGP is generated in a plane rigidly attached to the pitch circle. 

A mathematical model of rolling for involute tooth profile generation 

was already exposed in a previous work (Horodincă, 2020). This model is fully 

available here if is adapted at SSGR. The parametric trajectory Ti of any point 
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Pi1 placed on the SSGR during rolling (on fixed pitch circle) is described in a 

fixed CCS xOy by the equations: 
 

)sin()]([)cos(])([)cos()( 
1ip1ipci PyRPxRxPx           (2) 

 

)cos()]([)sin(])([)sin()( 
1ip1ipci PyRPxRyPy           (3) 

 

 Here y1(Pi1) coordinates are mandatory described with Eq. (1). All other 

elements involved in Eqs. (2) and (3) are fully explained in (Horodincă, 2020). 

 A certain value of the parameter β (variable in a range between 0 and 

2π) applied to all the points Pi1 provides a full description of a single SSGR 

position (i is variable, β is constant) during rolling. The length of SSGR (or the 

number of teeth on SSGR as well) depends by x1(Pi1) range in Eqs. (1), (2) and 

(3). Any two successive points 𝑃𝑖
𝛽

 and  𝑃𝑖+1
𝛽

 placed on this SSGR position are 

joined by a line segment. In CCS x1O1y1 the abscissa x1(P(i+1)1) is expressed as 

x1(P(i+1)1) = x1(Pi1)+Δx, with Δx small enough in order to have an accurate 

description of SSGR. The internal envelope bordered by all SSGR positions 

(during a completely rolling) is an approximation of the 2D SGP. The method 

of detection of this 2D SGP using a rotary ray (already depicted as an example 

in Fig. 1) was previously exposed in (Horodincă, 2020). 

 A trajectory Ti of a point 𝑃𝑖
𝛽

 placed on SSGR (i is constant, β is 

variable) is a roulette-type curve. The internal envelope bordered by all 

trajectories Ti is also an approximation of 2D SGP. 

 Even though the 2D SGP generating by rolling with SSGR is privileged 

in this paper, we should mention that some researchers (Luo, 2008; Si et al. 

2020) propose that the 2D SGP (as cosine gear profile in their works) is not 

generated by rolling with SSGR, but directly as a closed 2D sine circular profile 

(2D SCP) described in a fixed CCS xOy as an adaptation from (Si et al., 2020) 

by: 
 

)cos()]sin([ ZhRxx apc                             (4) 
 

  
)sin()]sin([ ZhRyy apc                             (5) 

 

 The same 2D SCP is generated if the datum (pitch) line of SSGR from 

Eq. (1) is wrapped around the pitch circle. Suppose that a current value of a 

parameter φ (the same from Eqs. (4), (5)) is defined as φ=x1(Pi1)/Rp from which 

it follows that x1(Pi1)=φRp=φmZ/2. During wrapping process there is a rotary 

segment having one fixed endpoint in pitch circle origin, with φ as angular 

current position (here related to a vertical line passing through pitch circle 

origin). The other endpoint describes the 2D SCP. The length RL of this rotary 

segment is variable, expressed as the addition between the pitch radius Rp and 

y1(Pi1) from Eq. (1), so RL=Rp+y1(Pi1). In Eq. (1) x1(Pi1) is replaced by φmZ/2 as 
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was shown above. The coordinates x, y, of a current point placed on 2D SCP are 

evidently described as x=RLcos(φ) and y=RLsin(φ) and consequently as: 
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 As expected, Eqs. (6), (7) are identical with Eqs. (4), (5). Nevertheless, 

we should mention that the 2D SCP is not perfect identical with 2D SGP (as this 

paper will prove later on). Two toothed wheel having 2D SCP (and Z, Z’ 

number of teeth) with the same module m and addendum ha doesn’t mesh 

properly together, the gearing laws (Dooner, 2002) are not accomplished 

because the profiles were not generated by rolling (as 2D SGP it is). However, 

in order to have a perfectly matched gear, the 2D SCP from a toothed wheel 

should be mandatory transferred to the conjugate toothed wheel by rolling. 

 

3. Simulation Results 

 

 All the simulations from this paper were done in Matlab. A first 

simulation result on 2D SGP generated by SSGR rolling (for Z=20, m=1mm, 

ha=1mm, ch=1) is exposed in Fig. 2, focused on the area of a single tooth.  

 
 

 
 

Fig. 2 – Some successive positions of SSGR during a partially 

 simulation definition of 2D SGP by rolling. 
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Here 500 different equidistant positions of SSGR and 1000 positions of 

rotary ray (involved in 2D SGP detection) were used (for a completely rolling). 

The SSGR rolls in clockwise direction, between two extreme positions SSGR 1 

and SSGR2. 
 

 
 

Fig. 3 – A completely 2D SGP simulation by rolling (Z=20, m=1mm, ha=1mm, ch=1). 
 

The complete 2D SGP simulation by rolling is described in Fig. 3. A 

detail of B area is described in Fig. 4. The 2D SGP occurs as internal envelope 

bordered by all SSGR positions during a complete rolling. 
 

 

 

 

 
Fig. 4 – A 2D SGP as envelope bordered 

by SSGR positions. 
Fig. 5 – A 2D SGP as envelope bordered 

by roulette type curves (trajectories Ti). 
 

 

Fig. 5 shows that the 2D SGP can be described also as internal envelope 
bordered by roulette-type curves (trajectories Ti described by all the point 
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placed on SSGR, some of them depicted on Fig. 5), a subject already discussed 

before in (Horodincă, 2020). All these trajectories are tangent to 2D SGP. There 

are three kinds of roulette-type curves highlighted in Fig. 5: TaL and TaR with 

returning lobe, TbL and TbR with returning point and Tc with returning arc. Here 

TbL and TbR curves are involutes, as being generated by points placed on SSGR 

and datum line (this line rolls around pitch circle which works as base circle). 
 

 

 
 

 

 

Fig. 6 – Tooth pointing phenomenon on 

2D SGP (Z=20, m=1mm, ch=1.5). 
 

Fig. 7 – Tooth pointing and undercutting 

phenomena (Z=20, m=1mm, ch=2). 
 

  

A critical issue in 2D SGP simulation is the value of addendum ha or 

more precisely the value of proportionality factor ch from ha=chm relationship. 

A simulation of 2D SGP in similar conditions with Fig. 5 except the value of ch 

(ch=1.5, ha=1.5m) proves (Fig. 6) that for high addendum (and small number of 

teeth Z) the tooth tip becomes sharp, a tooth pointing phenomenon occurs. If the 

factor ch is increased more (ch=2 in Fig. 7) apart from pointing occurs 

supplementary the undercutting phenomenon. However in practice, by 

similitude with involute gears, these high values of ch factor (ch>1) are not used. 

 The irregular distribution of curves Ti from Figs. 5 and 6 (compared with 

Fig. 4), can be an indicator of sliding between SSGR and 2D SGP during rolling.  

 The first major advantage of 2D SGP as against 2D involute gear 

profile (2D IGP) is graphically depicted in Fig. 8. Here both profiles are 

drawn, for the same number of teeth (Z=12), module (m=1mm) and 

addendum (ha=1mm, equal with dedendum). The simulation of 2D IGP was 

done accordingly with a previous work (Horodincă, 2020). Here it is obvious 

the appearance of a well-known undercutting phenomenon on 2D IGP while on 

2D SGP this undesired phenomenon doesn’t occurs. 

 A second major advantage of 2D SGP as against 2D IGP is graphically 

depicted in Fig. 9, also both profile drawn for the same number of teeth (Z=30), 
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module (m=1mm) and addendum/dedendum (ha=1mm). Here it is obvious that 

on 2D SGP the tooth thickness in the root area is bigger than 2D IGP tooth 

thickness. This means a lower bending stress on 2D SGP for the same loading. 

2D SGP accept a higher loading for the same bending stress. Also, as a positive 

feature, because the top land of 2D GSP is rounded the edge effect in gearing 

disappears. 

  

However, because the 2D SGP have a smaller tooth thickness than 2D 

IGP in the tip circle area, is expected that the contact ratio for this type of gear 

decreases. This is a negative feature for external gears but is positive for internal 

gears because it helps avoiding the tip tooth interference (Si et al., 2020).  
 

 

 
 

Fig. 10 – 2D SGP versus 2D SCP (Z=20, m=1mm, ch=1). 

 

 
 

 

 

Fig. 8 – Sine and involute gear profiles 

simulation (Z=12, m=1mm, ch=1, 

addendum equal with dedendum, 1mm). 
 

Fig. 9 – Sine and involute gear profiles 

simulation (Z=30, m=1mm, ch=1, 

addendum equal with dedendum, 1mm). 
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A graphical description of a part of 2D SGP (revealed in Figs. 4 and 5) 

and a part of 2D SCP (calculated using Eqs. (4) and (5)) both for Z=20, 

m=1mm, ha=1mm, (ch=1) is done in Fig. 10. As already was said, it is obvious 

that these two profiles doesn’t fit perfectly. The dissimilarity between these 

profiles is also described on Fig. 10 as profile error, or the evolution of 

difference between the ordinates of points placed on 2D SCP and the ordinates 

of points placed on 2D SGP as well. 

The difference is permanently positive, as expected, it has a left-right 

symmetrical periodical shape. Some very small variations of the profile error 

(e.g. in B area) are related by incremental definition of 2D SGP (due to 

incremental positions of SSGR). 

A high quality and precision of gearing is obtained of course only using 

2D GSP. Only for some unpretentious applications this profile can be replaced 

with 2D SCP.  

The 2D SGP is suitable for spur and helical external and internal gears. 

Fig. 11 presents a simulation of 2D SGP for an internal gear (20/25 gear 

ratio), both toothed wheels having the same SSGR (m=1mm, ch=1). 
 

 

 
 

Fig. 11 – 2D SGP of an internal gear (Z=20, Z’=25, m=1mm, ch=1). 
 

  

One of two toothed wheels involved in this internal gear (e.g. outer 

gear) can have 2D SCP but for a precise gearing, the other toothed wheel (inner 

gear) should mandatory have a profile generated by rolling (during rolling a 

wheel works as a tool for the other, similarly with a gear shaper process). 
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Because an internal gear with 2D SGP doesn’t need clearance, it is 

suitable for pumps. For some applications with internal gears is desirable to 

have a small difference of teeth numbers (e.g. in planetary gears, Si et al., 

2020), sometimes at the lowest limit with Z’-Z=1. This odd lowest limit implies 

to solve a relatively difficult problem: the tip tooth interference in the circle 

diametrically opposite point to the pitch point (see B area in Fig. 11, on an 

internal gear having also an odd difference Z’-Z=5). 

An internal gear, avoids apparently the interference in this point if 

Z’-Z=2, (the outer gear having permanently a tooth aligned with a space on the 

inner gear) as it is proved in Fig. 12, but there are other regions (highlighted 

with red bullet points) where the interference take places. 
 

 
 

 

 

Fig. 12 – 2D SGP of an internal gear 

(Z=20, Z’=22, m=1mm, ch=1) with tooth 

tip interferences. 
 

Fig. 13 – 2D SGP of an internal gear 

(Z=20, Z’=22, m=1mm, ch=0.8) without 

tooth tip interferences. 
 

There is a simple way to eliminate this interference as Fig. 13 proves: to 

reduce the tooth addendum ha=ch·m or to reduce the value of ch factor as well 

on both toothed wheels until the interference disappears. Thus, in Fig. 13 

ch=0.8, in contrast with Fig. 12, where ch=1. An internal gear having Z’-Z=2 is 

currently used in harmonic drives. Here because the outer gear (or the flexspline 

as well) is deformable (having an almost elliptical cross section) it is possible to 

avoid the tip tooth interference with ch>0.8. Taken into account the other 

advantages of 2G SGP probably is a good option to use this profile in a 

harmonic drive. 

 It is possible to generate the 2D SGP for an internal gear having Z’-Z=1 

without interference based on a study depicted in Fig. 14 (Z’=21, Z=20, 

m=1mm, ha=1·m, ch=1). In area B, the tip of outer gear is placed on the pitch 

circle of the inner gear and the tip of inner gear is placed on the pitch circle of 

the outer gear (because the addendum is equal with dedendum on both wheels), 
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so it is easy to observe that the interference can be avoided at the limit by 

halving the addendum ha (from ha=1·m to ha=0.5·m) or the factor ch as well 

(from ch=1 to ch=0.5) during profile generation by rolling of both toothed wheel. 

The efficiency of this decision is fully confirmed by simulation, as Fig. 

15 proves, the interference disappears; now the gear should work properly.  
 

 

 
 

 

 

Fig. 14 – 2D SGP of an internal gear 

(Z=20, Z’=21, m=1mm, ch=1) with tooth 

tip interferences. 
 

Fig. 15 – 2D SGP of an internal gear 

(Z=20, Z’=21, m=1mm, ch=0.5) without 

interferences. 
 

 

 
 

 

 
 

Fig. 16 – Tip tooth interference 

verification by rolling (on internal gear). 
 

    Fig. 17 – A detail in B area of Fig. 16. 

 With ch=0.5 in B area on Fig. 15 there is a temporary sliding contact 

between the teeth tips. If it is necessary to avoid this contact, ch should be 

reduced a little more. 
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 There is a simple way to verify that an internal gear with Z’-Z=1 and 

ch=0.5 works properly (no matter the values of Z’, Z and m), without tip tooth 

interference: by rolling the movable pitch circle of inner gear together with Z’ 

2D SGP around the fixed pitch circle of outer gear Z. If there is no any tip tooth 

interference, then the inner envelope bordered by the 2D SGP positions of inner 

gear (Z’) should be exactly the 2D SGP of outer gear (Z). This is confirmed in 

the graphical result of simulation from Fig. 16 using the 2D profiles depicted in 

Fig. 15 (Z=20, Z’=21, m=1mm, ch=0.5). Fig. 17 depicts a detail of Fig. 16 in B 

area. The positions of inner gear profile are strictly bordered by outer gear 

profile. This happens certainly everywhere on the 2D GSP of outer gear. 

Similarly, by rolling, can be clearly indicated the interference for the 

internal gear whose profiles are depicted in Fig. 12 (Z=20, Z’=22, m=1mm, 

ch=1), as Fig. 18 proves. In contrast to Fig. 17 the positions of inner gear profile 

are not totally internally bordered by outer gear profile. Certainly this internal 

gear doesn’t work. 

Also by rolling simulation, Fig. 19 indicated the lack of interference for 

the internal gear with the profiles depicted in Fig. 13 (Z=20, Z’=22, m=1mm, 

ch=0.8). This internal gear works properly. 
 

 

 

 

 

Fig. 18 – Tip tooth interference proved by 

rolling for the internal gear from Fig. 12 

(Z=20, Z’=22, m=1mm, ch=1). 
 

Fig. 19 – The lack of interference proved 

by rolling for the internal gear from Fig. 13 

(Z=20, Z’=22, m=1mm, ch=0.8). 
 

If we return back to the internal gear with Z’-Z=1 and ch=1 (with a 

study of interference done in Fig. 14), we should mention that the tip tooth 

interference can be avoided also by reducing (increasing) the tip radius of outer 

(inner) gear (e.g. by a turning process on each gear blank previously the gearing 

process) until the interference completely disappears. Of course the easiest way 

is to decide the values of these profiles corrections (values of tip radii) by 

computer aided simulation before manufacturing. 
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The 2D SGP of internal gear with modified tip radii are depicted in Fig. 20. 

The tip radius of outer gear is reduced from m·Z/2+1m to m·Z/2+0.23m while 

the tip radius of inner gear is increased from m·Z/2-1m to m·Z/2-0.23m, or the 

addendum is diminished from 1m to 0.23m on both gears (inner and outer). 

The lack of tip tooth interference is proved by rolling in Fig. 21. 

Unfortunately, on Fig. 20 is evidently that by decreasing (increasing) of tip radii 

the total contact surface is drastically reduced (and the loading capacity as well) 

compared with an internal gear having ch=0.5 and uncorrected 2D SGP (Fig. 15). 

This inconvenient is seriously worsened by the apparition of the undesired edge 

effect of the teeth tips. 
 

 
 

 

 
 

Fig. 20 – The avoidance of interference of 

the internal gear with 2D SGP  

from Fig. 14 by tip radii corrections.  

 

Fig. 21 – The lack of interference proved 

by rolling for 

the internal gear from Fig. 20. 
 

These studies proves that the best decision for an internal gear with 

Z’-Z=1 in order to avoid tip tooth interference is to use a value ch=0.5 in the 

definition of tooth addendum (dedendum). This type of internal gear can be 

used inside a speed reducer working similarly with a cycloidal drive (here with-

(Z’-Z)/Z=-1/Z=-1/20 speed ratio). A prototype of this internal gear 

manufactured by 3D printing confirms that it works properly, including the 

behaviour as a cycloidal drive. 

 
4. Conclusions 

 

 The computer aided simulation of a cross section 2D sine gear profile 

(2D SGP) used on spur (or helical) gears is the main purpose of this paper. The 

simulation is based on the rolling of a movable sine shape generating rack 

(SSGR) on a fixed pitch circle. A previous developed mathematical model of 
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rolling for involute profiles (slightly adapted here for 2D GSP) and a 2D profile 

detection method (Horodincă, 2020) were used in this paper. 

The inner envelope bordered by as many as possible angular uniformly 

distributed positions of SSGR during a completely rolling defines the best 

approximation of a 2D SGP. Each SSGR position and finally the 2D SGP are 

described by the Cartesian coordinates of a succession of extremely closed 

equidistant points, with line segments between. 

The rolling simulation method of 2D SGP proposed in this paper (using 

Matlab) helps a better understanding of the features and the behavior of this 

type of gear profile, proved in some particular cases (e.g. the study of 

undercutting and tooth pointing phenomenon, tooth thickness in the root area, a 

comparison with a possible substitution of sine gear profile with a sine circular 

profile, etc.). 

A consistent part of this paper was reserved to a study related with the 

gearing features of internal gears with 2D SGP having small teeth number 

differences (used frequently in planetary reducers). Especially the tip tooth 

interference and some solutions to detect and to avoid this undesired 

phenomenon were revealed by simulation. It was proved that the 2D GSP is 

suitable for internal gears with smallest possible teeth number difference (1) if 

the addendum (and dedendum as well) is 0.5m on both gears.  

The 2D SGP are fully available for computer aided design of 3D model 

of spur (or helical gears) and additive manufacturing (3D printing) and for 

manufacturing by cutting processes (2D contouring on CNC milling machines) 

or equivalent processes (laser, wire electrical discharge machining, water jet 

cutting, etc.). 

Some other research possibilities based on simulation are available for a 

future research (e.g. computer aided automatically tip tooth interference 

detection for internal gears, undercutting and tooth pointing detection, etc.) 

A simulation of bevel spiral gears and hypoid gears by 3D rolling will 

be considered for a future work. 
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UN STUDIU AL PROCESULUI DE GENERARE A PROFILELOR SINUSOIDALE 

UTILIZATE PE ROȚILE DINȚATE CILINDRICE 

 

(Rezumat) 

 

Lucrarea prezintă o serie de abordări teoretice legate de simularea profilelor 2D 

ale roților dințate cilindrice cu profile sinus (în secțiune transversală). Comparativ cu 

profilele evolventice, cele cu profile sinus sunt mai avantajoase deoarece prezintă 
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alunecări mai reduse între flancuri, au capacitate de încărcare mai mare și asigură o 

funcționare mai silențioasă. Asemănător cu metoda de generare a profilelor evolventice 

pe flancurile roților dințate, profilele sinus sunt obținute prin rularea unei cremaliere 

generatoare cu profil sinusoidal peste un cerc de rostogolire fix. Anvelopa interioară 

mărginită de pozițiile cremalierei generatoare în timpul rulării descrie profilul 2D al 

danturii cu profil sinus. Principalele realizări ale acestei lucrări sunt legate de simularea 

rulării și detecția descrierii 2D a profilelor sinus în diferite situații. Este cercetată de 

asemeni influența formei cremalierei generatoare (înălțimea dintelui) asupra profilului 

generat. 


